The Limiting Power of Autocorrelation Tests in Regression Models with Linear Restrictions
نویسندگان
چکیده
It is well known that the Durbin-Watson and several other tests for first-order autocorrelation have limiting power of either zero or one in a linear regression model without an intercept, and tend to a constant lying strictly between these values when an intercept term is present. This paper considers the limiting power of these tests in models with restricted coefficients. Surprisingly, it is found that with linear restrictions on the coefficients, the limiting power can still drop to zero even with the inclusion of an intercept in the regression. It is also show n that for regressions with valid restrictions , these test statistics have algebraic forms equivalent to the corresponding statistics in the unrestricted model.
منابع مشابه
Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملDiagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions
Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...
متن کاملFinite sample power of Cliff-Ord-type-tests for spatial disturbance correlation in linear regression
The paper considers tests against for autocorrelation among the disturbances in linear regression models that can be expressed as ratios of quadratic forms. It shows that such tests are in general not unbiased and that power can even drop to zero for certain regressors and spatial weight matrices. Whether or not this can happen is however easily diagnosed for given regressors and for given spat...
متن کاملTESTING FOR AUTOCORRELATION IN UNEQUALLY REPLICATED FUNCTIONAL MEASUREMENT ERROR MODELS
In the ordinary linear models, regressing the residuals against lagged values has been suggested as an approach to test the hypothesis of zero autocorrelation among residuals. In this paper we extend these results to the both equally and unequally replicated functionally measurement error models. We consider the equally and unequally replicated cases separately, because in the first case the re...
متن کاملNew Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power
The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004